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We consider diffusively coupled map lattices with P neighbors �where P is arbitrary� and study the stability
of the synchronized state. We show that there exists a critical lattice size beyond which the synchronized state
is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by
performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis
is also extended to two-dimensional P-neighbor diffusively coupled map lattices.
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I. INTRODUCTION

In recent years, synchronization of coupled dynamical
systems �1–3� has become an important area of research for
their applications in a variety of fields including secure com-
munications, cryptography, optics, neural networks, pattern
formation, geophysics, and population dynamics �4–7�. In
particular, the stability of synchronized state in coupled map
lattices �CML� with various coupling schemes have been
studied extensively �8–23�. To be specific the CML with dif-
fusive coupling has attracted considerable attention in recent
studies. In such systems, the synchronized state is not stable
when the number of nodes exceeds a certain critical limit and
each node is coupled only with its nearest neighbor �11,13�.
In this paper, using the formalism put forth in Refs. �11,13�
we derive an exact analytic expression for this limit for a
more general case of P-neighbor coupling. Further, the re-
sults are verified through numerical simulations in coupled
logistic map lattices. All the analyses are carried out in both
one-dimensional �1D� and two-dimensional �2D� CMLs.
Studies similar to our present work, but for coupled oscilla-
tors, are reported in Refs. �24,25�.

II. CRITICAL SIZE LIMIT IN 1D CASE

Consider one-dimensional coupled map lattices with
P-neighbor diffusive coupling represented by

x j�n + 1� = f„x j�n�… +
1

2P
�
p=1

P

ap�f„x j−p�n�…

+ f„x j+p�n�… − 2f„x j�n�…� , �1�

where x j is a M-dimensional state vector, j represents the
lattice site, L is the lattice size, ap is the coupling strength
between the jth map and its pth neighbor, and the evolution
of the map at the jth site is described by f(x j�n�). Also the
periodic boundary condition is imposed and the synchro-
nized state �synchronization manifold� is defined by x1�n�
=x2�n�= ¯ =xL�n�=x�n�. Since ap is a very general cou-

pling coefficient, the long range model proposed by An-
tenedo �8� can be incorporated into the above equation.

Linearizing Eq. �1� around x and performing the discrete
spatial Fourier transform �l�n�= 1

L� j=1
L exp�−i2�jl /L�z j�n�,

the resulting form after simplification �see Refs. �6,12� for
details� is

�i�l� = hi + ln�1 −
2

P
�
p=1

P

ap sin2��pl/L��,

i = 1,2, . . . ,M, l = 0,1, . . . ,L − 1. �2�

Here �i�l�’s are the Lyapunov exponents corresponding to
the lth mode and hi’s are the Lyapunov exponents of the
isolated map ordered as h1�h2� ¯ �hM. The mode l=0
corresponds to the synchronized state and the other modes
represent its transverse variations. Hence �1�l� gives the
largest transverse Lyapunov exponent for the mode l�0.
Therefore the stability of the synchronized state is ensured
if �1�l��0 for all l�0. However, the symmetry in Four-
ier modes reduces this condition as �1�l��0 for l
=1,2 , . . . ,L /2 ��L−1� /2 if L is odd�. Thus the stability con-
dition reduces to

�1 −
2

P
�
p=1

P

ap sin2��pl/L��
� exp�− h1�, l = 1,2, . . . ,L/2 or �L − 1�/2, �3�

and this expression is also obtained in Ref. �6�. We use this
condition to derive the expression for the critical lattice size
limit in the rest of this paper.

Let �l=1− 2
P�p=1

P ap sin2��pl /L� and define �max

=max��l�, �min=min��l�. Then the above stability condition
can be rewritten as

�max � exp�− h1�, �min � − exp�− h1� . �4�

Let �l
�=1− 2�

P �p=1
P sin2��pl /L�, �=min�ap�, and define an

upper bound on �max as �max
* =max��l

��. Therefore the first
stability condition is ensured if �max

* �exp�−h1�. Similarly,

let �l
��=1− 2��

P �p=1
P sin2��pl /L�, ��=max�ap�, and define a

lower bound on �min as �min
* =min��l

���. Hence the second
stability condition in Eq. �4� is ensured if �min

* �−exp�−h1�.
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We start with the simplest case of nearest neighbor cou-
pling for which results already exist �11,13� and then we
extend the idea to a more general P-neighbor coupling. In
the nearest neighbor coupling case, �max

* =1−2� sin2�� /L�.
Therefore the first stability condition is satisfied if �

�
1−exp�−h1�

2 sin2��/L� , where �	ap ∀ p. Consequently, in terms of the

coupling coefficients, the above condition becomes

ap �
1 − exp�− h1�
2 sin2��/L�

∀ p . �5�

Similarly, �min
* =1−2�. Hence the second stability condition

is satisfied if ���
1+exp�−h1�

2 , where ���ap ∀ p. In terms of
coupling coefficients, we get

ap �
1 + exp�− h1�

2
∀ p . �6�

Combining the two inequalities �5� and �6�, we get the final
stability condition �11,13� as

1 − exp�− h1�
2 sin2��/L�

� ap �
1 + exp�− h1�

2
∀ p . �7�

As L becomes larger, the above stability range becomes
smaller and at a particular critical value of L, the range
shrinks to zero. Beyond this critical value of L, the stability
condition �7� is violated and hence the synchronized state
can never be stable. At this critical value of L, one can re-
place the inequalities by equality signs in Eq. �7� and get

L1,1 = Int	 �

sin−1
„

tanh�h1/2�…� , �8�

where L1,1 is the maximum lattice size that can support syn-
chronized chaos in a one-dimensional nearest neighbor dif-
fusively coupled map lattice.

Let us now turn to the more general case of P-neighbors
diffusively coupled map lattices for which no previous ana-
lytical results exist. However, similar results do exist for
coupled oscillators �24,25�. After making use of some simple

trigonometric relations, the expressions for �l
� and �l

�� take
the forms

�l
� = 1 − �	1 −

sin�P�l/L�cos��P + 1��l/L�
P sin��l/L� � , �9�

and

�l
�� = 1 − ��	1 −

sin�P�l/L�cos��P + 1��l/L�
P sin��l/L� � , �10�

respectively, where �	ap	�� ∀ p. The expression inside
the square brackets takes its lowest value when l=1 and it
takes its highest value for the mode l= lh=Int�L1,1 /2�, for all
values of P. Following the same procedure as in the nearest
neighbor case, we finally get

1 − exp�− h1�

	1 −
sin�P�/L�cos��P + 1��/L�

P sin��/L� �
� ap �

1 + exp�− h1�

	1 −
sin�P�lh/L�cos��P + 1��lh/L�

P sin��lh/L� � ∀ p .

�11�

At the critical coupling strength �c �ap=�c ∀ p� the extreme
values of ap coincide and the above expression becomes

sin�P�/L1,P�cos��P + 1��/L1,P�
sin��/L1,P�

= P	1 − tanh�h1/2�


�1 −
sin�P�lh/L1,P�cos��P + 1��lh/L1,P�

P sin��lh/L1,P� 
� ,

�12�

where lh=Int�L1,1 /2� and L1,1 is given in Eq. �8�. The critical
lattice size limit L1,P is obtained by solving the above tran-
scendental equation numerically. In a special case of P
=L /2 �or �L−1� /2 for odd L� we get h1=2 tanh−1�1�. This
result indicates that the synchronized state is always possible
for globally coupled map lattices as long as h1��. The de-
pendence of L1,P on the maximum Lyapunov exponent of the
isolated map �h1� and the number of neighbors coupled �P�
are shown in Figs. 1�a� and 1�b�. It is observed that L1,P
increases almost linearly with P for a particular value of h1,
and decays with h1 for a particular value of P. Also, all the
results are confirmed numerically by considering the logistic
map �defined by x�n+1�=1−r�x�n��2� at each node. The
variations of the critical coupling strength �c and the critical
size limit L1,P with P �for r=1.9� are shown in Figs. 1�c� and
1�d�.

III. CRITICAL SIZE LIMIT IN 2D CASE

Now we consider two-dimensional coupled map lattices
with P-neighbor diffusive coupling of the form

x j,k�n + 1� = f„x j,k�n�… +
1

4P
�
p=1

P

�ap�f„x j−p,k�n�…

+ f„x j+p,k�n�… − 2f„x j,k�n�…�

+ bp�f„x j,k−p�n�… + f„x j,k+p�n�… − 2f„x j,k�n�…�� ,

�13�

where x j,k is a M-dimensional state vector, �j ,k� represents
the lattice site, L is the lattice size, and ap and bp are the
coupling strengths between the �j ,k�th map and its pth
neighbor along j and k directions, respectively.

In this case, the stability condition for the synchronized
state is
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�1 −
1

P
�
p=1

P

�ap sin2��pl/L� + bp sin2��pm/L��� � exp�− h1� ,

�14�

where l ,m=0,1 , . . . ,L−1, �l ,m�� �0,0�.
If we define �l,m=1− 1

P�p=1
P �ap sin2��pl /L�

+bp sin2��pm /L��, �l ,m�� �0,0�, �max=max��l,m�, and �min

=min��l,m� then the above stability condition becomes

�max � exp�− h1�, �min � − exp�− h1� . �15�

Performing an analysis similar to the 1D case, we obtain
the expression for critical lattice size limit for nearest neigh-
bor coupling as

L2,1 = Int	 �

sin−1�
2 tanh�h1/2��� . �16�

In the case of P-neighbor diffusive coupling, we obtain
the expression for the critical lattice size limit L2,P as

sin�P�/L2,P�cos��P + 1��/L2,P�
sin��/L2,P�

= P	1 − 2 tanh�h1/2�


�1 −
sin�P�lh/L2,P�cos��P + 1��lh/L2,P�

P sin��lh/L2,P� 
� ,

�17�

where lh=Int�L2,1 /2�. L2,1 is the critical lattice size limit for

two-dimensional nearest neighbor diffusively coupled map
lattices and is given in Eq. �16�. L2,P is obtained by solving
Eq. �17� numerically. The dependence of L2,P on the maxi-
mum Lyapunov exponent of the isolated map �h1� and the
number of neighbors coupled �P� are shown in Figs. 2�a� and
2�b�. In our numerical verification, we have again considered
logistic map at each node. The variations of the critical cou-
pling strength �c and the critical size limit L2,P �for r=1.5�
with P are shown in Figs. 2�c� and 2�d�.

IV. CONCLUSIONS

We have presented expressions for the critical lattice size
limits �L1,P and L2,P� for both one- and two-dimensional
coupled map lattices with P-neighbor coupling. In both
cases, the value of these critical size limits increase almost
linearly with the number of coupled neighbors. In addition,
all the above results were verified through numerical studies
using coupled logistic map lattices. Moreover, as P increases
to the global coupling limit we showed explicitly that the
critical size limit tends to infinity. However, our results are
not valid for discontinuous maps �for example, the Bernoulli
map considered in Refs. �9,10�� since the linear stability
analysis fails if strong nonlinear effects are present.
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FIG. 1. �a� The variation of L1,P with h1, �b� the variation of L1,P

with P, �c� the variation of �c with P in one-dimensional coupled
logistic map lattices, obtained for r=1.9, and �d� the variation of
L1,P with P in one-dimensional coupled logistic map lattices, ob-
tained for r=1.9 �h1=0.5554�.
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FIG. 2. �a� The variation of L2,P with h1, �b� the variation of L2,P

with P, �c� the variation of �c with P in two-dimensional coupled
logistic map lattices, obtained for r=1.5, and �d� the variation of
L2,P with P in two-dimensional coupled logistic map lattices, ob-
tained for r=1.5 �h1=0.2378�.
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